
A

(
t
a
f
w

i
r
p
©

K

1

a
i
i
s
d
d

b
b
u
d

0
d

Journal of Pharmaceutical and Biomedical Analysis 43 (2007) 119–130

Exploration of linear modelling techniques and their combination
with multivariate adaptive regression splines to predict

gastro-intestinal absorption of drugs

E. Deconinck a, D. Coomans b, Y. Vander Heyden a,∗
a Department of Analytical Chemistry and Pharmaceutical Technology, Pharmaceutical Institute,

Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels, Belgium
b Statistics & Intelligent Data Analysis Group, James Cook University, Townsville 4814, Australia

Received 19 April 2006; received in revised form 9 June 2006; accepted 10 June 2006
Available online 21 July 2006

bstract

In general, linear modelling techniques such as multiple linear regression (MLR), principal component regression (PCR) and partial least squares
PLS), are used to model QSAR data. This type of data can be very complex and linear modelling techniques often model only a limited part of
he information captured in the data. In this study, it was tried to combine linear techniques with the flexible non-linear technique multivariate
daptive regression splines (MARS). Models were built using an MLR model, combined with either a stepwise procedure or a genetic algorithm
or variable selection, a PCR model or a PLS model as starting points for the MARS algorithm. The descriptive and predictive power of the models
as evaluated in a QSAR context and compared to the performances of the individual linear models and the single MARS model.
In general, the combined methods resulted in significant improvements compared to the linear models and can be considered valuable techniques
n modelling complex QSAR data. For the used data set the best model was obtained using a combination of PLS and MARS. This combination
esulted in a model with a Pearson correlation coefficient of 0.90 and a cross-validation error, evaluated with 10-fold cross-validation of 9.9%,
ointing at good descriptive and high predictive properties.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In silico screening of newly synthesised molecules for
bsorption, distribution, metabolisation, elimination and tox-
city (ADME-Tox) properties has become a very important
ssue in drug development. This to prevent molecules, positively
creened for their interaction with target molecules from being
eveloped and failing in a later phase of the drug development
ue to non-proper ADME-Tox properties.

In silico screening has the advantage that it can take place
efore molecules are even synthesised. These methods try to

uild relationships between a data set consisting of known val-
es for the property of interest and some calculated theoretical
escriptors. Theoretical descriptors are derived from molecu-
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ar representations of the molecules, thus no synthetisation nor
xperimental set-ups are required. These relationships are called
uantitative structure–activity relationships (QSAR). This paper
ocuses on building QSARs for gastro-intestinal absorption of
rugs.

Different QSAR-models for absorption of molecules can be
ound in the literature. For these models different modelling
echniques were used, including linear techniques like multiple
inear regression (MLR) [1–3], principal components regression
PCR) [4], partial least squares (PLS) [4–7], as well as non-
inear chemometric techniques like artificial neural networks
ANN) [8], classification and regression trees (CART) [9,10]
nd multivariate adaptive regression splines (MARS) [11]. A
ossible problem with these models is that they are either linear

r non-linear. Since the data space possibly consists of linear
nd non-linear regions, it can be assumed that a combination of
inear with non-linear techniques can give significant improve-

ents of the descriptive- and predictive properties of the models.

mailto:yvanvdh@vub.ac.be
dx.doi.org/10.1016/j.jpba.2006.06.022
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revious work in quantitative structure–retention relationships
QSRR) [12] and QSAR [11] has shown that the combination of
tepwise-MLR with MARS, called two-step MARS (TMARS),
an substantially improve the description and prediction of a
ata set compared to the individual MLR-model. Xu et al.
12] showed that TMARS significantly improved the predictive
bilities of the stepwise-MLR model for retention in gas chro-
atography and we [11] showed that TMARS can be a valuable

echnique in QSAR, since it is capable of significantly improving
n MLR model for gastro-intestinal absorption.

In this paper it was investigated whether better models could
e obtained when the stepwise linear regression step in the
MARS approach is replaced by other linear modelling tech-
iques. Therefore linear models were built using MLR, PCR
nd PLS for the gastro-intestinal absorption of drugs. In a next
tep these models were used as starting point for MARS, result-
ng in different models combining a linear technique with the
on-linear technique MARS. The descriptive and predictive
roperties of all models as well as the capability of MARS to
mprove these properties was evaluated.

. Theory

.1. Multiple linear regression (MLR)

MLR is the most widely known multiple linear modelling
echnique. Normally MLR cannot be used to model complex
SAR data, due to the fact that in most cases the number of
escriptive variables exceeds the number of objects. Therefore
ariable selection is necessary prior to modelling. In this work
wo methods were used. The first is stepwise MLR. In this
echnique a forward selection procedure iterates with a back-
ard elimination procedure. The forward selection procedure

tarts with the variable that has the highest correlation with the
esponse variable, for example the gastro-intestinal absorption.
f this variable results in a significant regression, evaluated
ith an overall F-test, the variable is retained and selection

ontinues. In a next step the variable that gives the largest
ignificant increase of the regression sum of squares, evaluated
ith a partial F-test, is added. After each step of the forward

election procedure, the backward elimination procedure is
pplied. In this procedure a partial F-test for the variables
lready in the model is performed. If a variable is found that
oes not longer contributes significantly to the regression it
s removed from the model. The iteration is repeated until the

odel cannot be improved anymore by adding or removing
ariables [13].

The second variable selection method used consists of a
enetic algorithm procedure that was followed by MLR with
he selected variables. In a genetic algorithm procedure for vari-
ble selection, a population of strings is randomly created. Each
tring consists of a row-vector with a number of elements equal
o the number of descriptive variables in the data set. Each string

onsists of zeros and ones, zero indicating that the correspond-
ng variable is not selected and one indicating that it is. The
tness of each is equal to the value of the evaluation criterion

hat has to be optimised by the algorithm. In this work, the root
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ean squared error of cross-validation (RMSECV) of the MLR
odel build with the variables selected in the string was used

s evaluation criterion. The randomly selected initial population
f strings then evolves. The strings with the highest fitness are
elected and undergo crossover and mutations. The procedure
s repeated a number of times. The selection of variables with
he lowest RMSECV value is then selected for MLR modelling
14,15].

.2. Principal component regression (PCR)

PCR is in fact multiple linear regression using the scores
n a number of principal components as descriptive variables.
he principal components are latent variables. The two main
dvantages of PCR over MLR are the reduction of the number
f variables to a maximal number below the number of objects
nd decorrelation of the variables. In a first step the significant
rincipal components are selected. In a second step MLR is
pplied using the scores on the selected principal components
s latent variables [13].

.3. Partial least squares (PLS)

PLS is an alternative for PCR. The latent variables in PLS
re also linear combinations of the descriptive variables in the
ata set, but instead of maximising the variance in the matrix
ith descriptive variables like in PCA, the covariance with the

esponse variable is maximised. The scores on the PLS factors
re used as input for multiple linear regression after selec-
ion of the optimal number of PLS-factors to be considered
13].

.4. Multivariate adaptive regression splines (MARS)

MARS is a local modelling technique, dividing the dataspace
n several, possibly overlapping regions and fitting truncated
pline functions in each region. A truncated spline function con-
ists of a left-sided, Eq. (1), and a right-sided, Eq. (2), segment,
eparated by a so-called knot location [11].

−
q (x − t) = [−(x − t)]q+ =

{
(t − x)q if x < t

0 otherwise
(1)

+
q (x − t) = [+(x − t)]q+ =

{
(x − t)q if x > t

0 otherwise
(2)

where b−
q (x − t) and b+

q (x − t) are the spline functions
escribing the regions right and left of the knot location t, respec-
ively, and q the power to which the spline is raised. The subscript
+” indicates that the result of the function is 0 when the argu-
ent is not satisfied. For each of the descriptive variables in
he data set MARS selects the pair of spline functions and the
not location that best describes the response variable. In the
ollowing step all the spline functions are combined in a com-
lex non-linear model, describing the response as a function of
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coefficient (log P), hydration energy, molar refractivity, molar
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he descriptive variables. The model has the form:

ˆ = a0 +
M∑

m=1

amBm(x) (3)

here ŷ is the predicted value for the response variable, a0 the
oefficient of the constant term, M the number of spline func-
ions, and Bm and am the mth spline function and its coefficient
16,17], respectivily.

In general, a MARS analysis consists of three steps. In a first
tep, the variable for which the selected pair of spline functions
ives the best description of the response variable is selected
s starting point for the model. After the selection of this first
air of splines, new spline functions are added stepwise. In each
tep of the stepwise addition procedure the pair of splines is
dded that gives the best improvement in the description of the
raining set. This procedure finally results in a complex multi-
ariate model, the global MARS-model, which almost perfectly
escribes the training set and usually shows overfitting. In a sec-
nd step of the analysis, the global MARS-model is pruned using
sequence of general cross-validations (GCV) alternated with
0-fold cross validation. During this procedure the contribution
f each spline function to the descriptive abilities of the model
s evaluated using a lack-of-fit (LOF) criterion. The least con-
ributing functions are eliminated stepwise. This pruning process
esults in a sequence of models with different sizes. In the final
tep of the MARS analysis the optimal model is selected using
cross-validation technique. The theory concerning MARS is

iscussed in more detail in literature [11,16–18].

.5. Two-step MARS (TMARS)

TMARS is in fact a combination of the stepwise MLR pro-
edure described in Section 2.1 and MARS. In a first step the
tepwise-MLR model is built. Starting from this linear model,

ARS is applied in the second step. During this procedure it
s evaluated if some of the descriptors of the linear model can
e replaced by a pair of spline functions. If so the descriptors
re removed from the model and replaced by a pair of spline
unctions. Starting from the obtained model, the stepwise addi-
ion procedure, described in Section 2.4 is applied, resulting in
he so-called global TMARS model. After obtaining the global

odel, pruning and selection of the optimal model is carried out
s in Section 2.4. The theory of TMARS is explained extensively
n Refs. [11,12].

.6. Theoretical molecular descriptors

A theoretical molecular descriptor is the final result of a logi-
al and mathematical procedure, which converts the chemical
nformation from a symbolic representation of the molecule
n a useful numerical value [19]. The number of theoretical
escriptors described in the literature is still growing. Different

lassification systems for these descriptors can be found. The
ost applied is that based on the molecular representation from
hich the descriptor is derived. This results in five classes, zero-
one-, two-, three- and four-dimensional descriptors, derived
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rom a molecular formula, a substructure list, a topological, a
eometrical and a stereoelectronic or lattice representation of
he molecule, respectively. More information about molecular
escriptors and their classification can be found in the work of
odeschini and Consonni [19].

. Material and methods

.1. Data

The used data set [11] consists of the percentages human
ntestinal absorption for 140 molecules. The names of the drugs
nd drug-like compounds together with their percentage intesti-
al absorption (%HIA) are listed in Table 1

. These data were selected because they consist of the absorp-
ion data for a high diversity of molecular structures and because
hey cover the whole range of the absorption scale (0–100%).

.2. Three-dimensional structure optimisation

The three-dimensional structures of the molecules were
rawn and optimized using the Hyperchem® 6.03 professional
oftware (Hypercube, Gainesville, FL, USA). After the input of
he molecule as a topological structure, geometry optimisation
as obtained by the molecular mechanics force field method

MM+) using the Polak–Ribière conjugate gradient algorithm
ith a RMS gradient of 0.1 kcal/(Å mol) as stop criterion. The
ptimisation of the structure results in a data matrix consisting
f the Cartesian coordinates of the atoms. This data matrix can
hen be used to calculate molecular descriptors [9,11].

.3. Calculating molecular descriptors

Molecular descriptors were calculated using the Dragon® 4.0
rofessional software [20]. This program allows to calculate 48
onstitutional descriptors, 119 topological descriptors, 47 walk
nd path counts, 33 connectivity indices, 47 information indices,
6 2D autocorrelations, 107 edge adjacency indices, 64 BCUT-
escriptors, 21 topological charge indices, 44 eigenvalue-based
ndices, 41 randic molecular profiles, 74 geometrical descriptors,
50 RDF descriptors, 160 3D-MoRSE descriptors, 99 WHIM
escriptors, 197 GETAWAY descriptors, 121 functional group
ounts, 120 atom-centered fragments, 14 charge descriptors and
8 molecular properties. More information about the above
escriptors can be found in the work of Todeschini et al. [19].
he software automatically eliminates descriptors resulting in
onstant values for a given data set. For descriptors with a cor-
elation higher than 0.98, parameters are set as such that only
ne is retained in the data set. Furthermore the Hyperchem®

.03 professional software was used to calculate solvent acces-
ible surface area, molecular volume, octanol/water partition
olarisability and molar mass [9,11]. The Mc. Gowans volume,
descriptor used in the linear free energy relationship (LFER) of
braham [19,21] was calculated manually. The final dataset con-

isted of the values for 761 different descriptors for 140 objects.
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Table 1
The absorption data for the 140 molecules of the training set [11]

No. Substance %HIA

1 Acarbose 1.5
2 Acebutolol 89.75
3 Acetaminophen 85
4 Acetylsalicylic acid 100
5 Acrivastine 88
6 Acyclovir 25
7 Adefovir 12
8 Alprenolol 93.75
9 Aminopyrine 100

10 Amoxicillin 93.75
11 Amphotericin B 5
12 Amrinone 93
13 Antipyrine 100
14 Atenolol 51
15 Atropine 90
16 Azithromycin 36
17 Aztreonam 1
18 Benazepril 37
19 Benzylpenicillin 27.5
20 Betaxolol 90
21 Bornaprine 100
22 Bretyliumtosylate 23
23 Bromazepam 84
24 Bromocriptine 28
25 Bumetanide 100
26 Bupropion 87
27 Caffeine 100
28 Camazepam 99
29 Captopril 68
30 Cefatrezine 76
31 Ceftriaxone 1
32 Cefuroxime 5
33 Cefuroximeaxetil 36
34 Cephalexin 98.5
35 Chloramphenicol 90
36 Chlorothiazide 23.75
37 Cimetidine 82.5
38 Ciprofloxacin 84.5
39 Cisapride 100
40 Clonidine 96.25
41 Codein 95
42 Corticosterone 100
43 Cromolynsodium 0.5
44 Cymarin 47
45 Cyproterone acetate 100
46 Dexamethasone 98
47 Diazepam 99.25
48 Doxorubicin 5
49 Enalapril 66
50 Enalaprilat 17.5
51 Erythromycin 35
52 Ethambutol 77.5
53 Ethinylestradiol 100
54 Etoposide 50
55 Felbamate 92.5
56 Fenoterol 60
57 Fluconazole 96.25
58 Foscarnet 17
59 Fosinopril 36
60 Fosmidomycin 30
61 Furosemide 61
62 Gabapentin 50
63 Ganciclovir 3.6
64 Guanabenz 75

Table 1 (Continued )

No. Substance %HIA

65 Guanoxan 50
66 Hydrochlorothiazide 72.75
67 Hydrocortisone 90.25
68 Imipramine 96.25
69 Indomethacin 100
70 Iothalamatesodium 1.9
71 Isoxicam 100
72 Isradipine 92.5
73 Labetalol 93.75
74 Lactulose 0.6
75 Lamotrigine 70
76 Levodopa 85
77 Lincomycin 27.5
78 Lisinopril 25
79 Loracarbef 100
80 Lormetazepam 100
81 Lovastatin 30.5
82 Mannitol 20
83 Meloxicam 90
84 Metaproterenol 44
85 Methotrexate 80
86 Methyldopa 41
87 Methylprednisolone 82
88 Metolazone 63
89 Metoprolol 95
90 Morphine 100
91 Nadolol 31
92 Nefazodone 100
93 Naloxone 91
94 Nordiazepam 99
95 Norfloxacin 35
96 Olsalazine 2.3
97 Ouabain 1.4
98 Oxatomide 100
99 Oxazepam 98.5

100 Oxprenolol 91.75
101 Phenoxymethylpenicillin 45
102 Phenytoin 90
103 Pindolol 91.75
104 Piroxicam 100
105 Practolol 98.75
106 Pravastatin 34
107 Prazosin 100
108 Prednisolone 98.9
109 Progesterone 93.25
110 Propranolol 92.5
111 Propiverine 84
112 Propylthiouracil 75
113 Quinidine 80.25
114 Raffinose 0.3
115 Ranitidine 52.75
116 Reproterol 60
117 Saccharin 88
118 Salicylic acid 100
119 Scopolamine 92.5
120 Sorivudine 82
121 Sotalol 96.25
122 Spironolactone 73
123 Sudoxicam 100
124 Sulfasalazine 38.75
125 Sulindac 90
126 Sulpiride 36
127 Sumatriptin 70
128 Terazosin 93.25
129 Terbutaline 66.5
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Table 1 (Continued )

No. Substance %HIA

130 Testosterone 100
131 Theophylline 96
132 Timolol maleate 85.5
133 Tranexamicacid 55
134 Trimethoprim 97
135 Trovoflaxicin 88
136 Venlafaxine 92
137 Verapamil 95
138 Warfarin 98.5
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Table 2
Selected descriptors [11,19] in the stepwise MLR-model

Descriptor Definition Descriptor class

nO Number of oxygen atoms Constitutional descriptors
TIE E-state topological parameter Topological descriptors
D/Dr05 Distance/detour ring index of

order 5
Topological descriptors

T(S··S) Sum of topological distances
between S··S

Topological descriptors

IC2 Information content index
(neighborhood symmetry of
2-order)

Information indices

Mor08m 3D-MoRSE-signal
08/weighted by atomic
masses

3D-MoRSE descriptors

Mor16v 3D-MoRSE-signal
16/weighted by atomic van
der Waals volumes

3D-MoRSE descriptors

HATS8v Leverage-weighted
autocorrelation of lag
8/weighted by atomic van der
Waals volumes

GETAWAY descriptors

nN N Number of N azo (aliphatic) Functional group counts
nN(CO)2 Number of imides Functional group counts
nOH Number of total hydroxyl Functional group counts

C

t
i
n

s

a
p
a
The root mean squared error of cross validation (RMSECV),
evaluated with 10-fold cross-validation for this model is 0.331
or 19.6%, calculated on the mean value of the %HIA values.
39 Ximoprofen 100
40 Zidovudine 100

.4. Building models

The MLR, PCR and PLS models were built using the algo-
ithms of an in-house toolbox written for Matlab 6.5 (The Math-
orks, Natick, MA). The genetic algorithm was programmed

n Matlab 6.5 according to the algorithm described by Jouan-
imbaud et al. [15]. The MARS algorithm was programmed
ccording to the original MARS algorithm proposed by Fried-
an [16]. The log transformed absorption values were used

s response variables and the calculated theoretical descriptors
s explanatory variables. The complete set of descriptors was
utoscaled.

. Results and discussion

.1. Multiple linear regression (MLR)

.1.1. Stepwise MLR
The stepwise MLR algorithm was applied to the data set

sing the Briggsian logarithm of the %HIA values as response
ariables and the autoscaled calculated descriptors as descriptive
ariables. The obtained linear model consists of 13 terms, with
ne constant term and 12 terms based on different descriptors.
he model is given by the following equation:

ˆ = 1.89 − 1.81(nO) − 1.19(TIE) − 0.43(D/Dr05)

− 1.19(T(S..S)) + 0.70(IC2) − 2.04(Mor08m)

+ 0.52(Mor16v) + 1.13(HATS8v) − 0.52(nN N)

+ 0.50(nN(CO)2) − 0.0814(nOH) − 0.40(C-0.30) (4)

able 2 shows the selected descriptors, their definition and
lass. Some of these descriptors can be related to the oxygen
nO, nOH, nN(CO)2), sulfur (T(S··S)) and nitrogen (nN = N,
N(CO)2) atoms present in the molecule. These atoms and
he functional groups containing them are important as proton
onors/acceptors in the molecule and so important in the calcu-
ation of the polar surface area (PSA). The PSA is a measure
or the H-bonding capacity of a molecule and it has been found

hat processes involving passive diffusion depend primarily on
hese H-bonding properties [22]. Most of the other descriptors
an be related to the two-dimensional (TIE, D/Dr05 and IC2) or
hree-dimensional (Mor08m, Mor16v and HATS8v) structure of
groups
-030 X–CH–X Atom-centered fragments

he molecules. The descriptor C-030 is based on a code describ-
ng each carbon atom through its atom type, bonding types and
eighbouring atom types in the molecule [19].

The coefficient of determination R2 equals 0.616. Fig. 1
hows the residual plot for the stepwise MLR model.

Based on the R2-value it can be concluded that the predicted
nd observed log(%HIA) are not highly correlated. The residual
lot shows that there is no random distribution of the residu-
ls, which can imply that the model is showing under fitting.
Fig. 1. Residual plot for the stepwise MLR model.
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espite the fact that the RMSECV-value is relatively low, it
ould be concluded that, based on the low correlation between
eal and predicted values, the absence of random distribution
n the residual plot and the high residuals, predictions based on
his model will not be reliable. The model is not suited for our
urposes, it has no satisfying descriptive and predictive abilities
nd should be improved.

.1.2. Variable selection with a genetic algorithm
ombined with MLR

The genetic algorithm was applied to the data set. The optimal
nput parameters were selected using a two-level full factorial
esign. For each of the indicated parameters two values, a high
nd a low, were selected. Each possible combination of these
actors was used to build a model. The values for the input
arameters, with which the best model was obtained, were set as
efault. Input parameters were set as follows: number of outer
ycles*: 10; number of chromosomes in the population: 20; prob-
bility for a variable to undergo crossover*: 25%; probability
f mutations*: 0.5%; number of generations*: 200; number of
eletion groups for performing cross validation: 10; maximal
MSEP: 0.3; frequency for the backward stepwise elimination*:
00.

The obtained linear model consists of 11 terms and is given
y the following equation:

ˆ = 2.68 − 2.07(nO) + 0.42(Yindex) − 0.73(GATS2p)

+ 0.62(EEig11x) + 0.06(EEig01r) + 0.38(RDF065m)

− 0.64(Mor05u) − 1.70(H3m) + 0.30(H6e)
+ 0.24(C-003) (5)

able 3 shows the selected descriptors, their definition and class.
he descriptor nO, reflects the number of oxygen atoms in the

able 3
elected descriptors [19] in the genetic algorithm-MLR model

escriptor Definition Descriptor class

O Number of oxygen atoms Constitutional descriptors
index Balaban Yindex Information indices
ATS2p Geary autocorrelation-lag

2/weighted by atomic
polarizabilities

2D autocorrelation

Eig11x Eigenvalue 11 from edge adjacent
matrix weighted by edge degrees

Edge adjacency indices

Eig01r Eigenvalue 01 from edge
adjacent matrix weighted by
resonance integrals

Edge adjacency indices

DF065m Radial distribution
function-6.5/weighted by atomic
masses

RDF descriptors

or05u 3D-MoRSE-signal
05/unweighted

3D-MoRSE descriptors

3m H autocorrelation of lag
3/weighted by atomic masses

GETAWAY descriptors

6e H autocorrelation of lag
6/weighted by atomic Sanderson
electronegativities

GETAWAY descriptors

-003 CHR3 Atom-centered fragments
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Fig. 2. Residual plot for the genetic algorithm-MLR model.

olecule. These atoms are important in the calculation of PSA,
property that can easily be related to the processes of gastro-

ntestinal absorption. Most other descriptors can be related to
he topological (Yindex, GATS2p, EEig11x and EEig01r) and
eometrical (RDF065m, Mor05u, H3m and H6e) structure of
he molecule. The descriptor C-003 is based on a code describ-
ng each carbon atom through its atom type, bonding types and
eighbouring atom types in the molecule [19].

The coefficient of determination R2 equals 0.576. Fig. 2
hows the residual plot for the genetic algorithms-MLR model.

The RMSECV-value for this model is 0.346 or 20.5%, eval-
ated with 10-fold cross-validation. Based on the R2-value, the
esidual plot and the RMSECV similar conclusions could be
ade as for the stepwise-MLR model. Predicted and observed

alues are not highly correlated, there is no random distribution
f the residuals and therefore the predictions based on this model
ill not be reliable.

.2. Principal component regression (PCR)

PCA is applied to the data set. The first eight principal com-
onents are selected for the PCR-model. They represent 93.6%
f the total variance in the matrix of the descriptive variables.
he first principal component (PC1) represents 86.0% of the
ariance. The selection of the optimal number of principal com-
onents for the model is based on leave-one-out cross-validation.
he model with the lowest RMSECV was selected as optimal.
ased on the loadings of the different descriptors on PC1, it is
ossible to have an idea which descriptors have a higher impact
n the model. Table 4 shows the 10 descriptors with the highest
oadings on PC1, their definition and class.

All descriptors can be related to either the two-dimensional
BEHv1, BEHe1, BEHp1, BIC4, ATS1v and PJI2) or three-
imensional (ISH, Mecc, FDI and Mor04m) structure of the

olecules [19].
Fig. 3 shows the residual plot for the PCR-model. The coeffi-

ient of determination R2 equals 0.293 and the RMSECV-value
s 0.449 or 26.6%. The residual plot of the PCR model shows a
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Table 4
The 10 descriptors [19] with highest loading on PC1 and PLS factors

Descriptor Definition Descriptor class

ISH Standardized information content
on the leverage equality

GETAWAY descriptors

MEcc Molecular eccentricity Geometrical descriptors
BEHv1 Highest eigenvalue n. 1 of burden

matrix/weighted by atomic van
der Waals volumes

BCUT descriptors

BEHe1 Highest eigenvalue n. 1 of burden
matrix/weighted by atomic
Sanderson electronegativities

BCUT descriptors

BEHp1a Highest eigenvalue n. 1 of burden
matrix/weighted by atomic
polarizabilities

BCUT descriptors

BELe6b Lowest eigenvalue n. 6 of burden
matrix/weighted by atomic
Sanderson electronegativities

BCUT descriptors

FDI Folding degree index Geometrical descriptors
BIC4 Bond information content

(neighborhood symmetry of
4-order)

Information indices

ATS1v Broto–Moreau autocorrelation of
a topological structure-lag
1/weighted by atomic van der
Waals volumes

2D autocorrelations

PJI2 2D Petitjean shape index Topological descriptors
Mor04m 3D-MoRSE-signal 04/weighted

by atomic masses
3D-MoRSE descriptors
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a No high loading on the PLS factors.
b No high loading on PC1.

rend in a smaller log(%HIA) interval, but larger residuals than
he ones of the MLR models. Based on the R2-, the RMSECV
alue and the residual plot, it can be concluded that the PCR
odel performs worse than the MLR models.

.3. Partial least squares (PLS)
PLS was applied to the data set. The optimal PLS model,
elected using a cross-validation sequence, consists of seven

Fig. 3. Residual plot for the PCR-model.
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Fig. 4. Residual plot for the PLS-model.

LS latent variables. By observing the loadings of the different
escriptors on the selected PLS factors, the variables with a
igher impact on the model can be determined. Table 4 shows
he 10 descriptors with highest loading on the PLS factors, their
efinition and class.

Nine of the ten descriptors also belong to those with
he highest loadings on the first principal component in the
CR analyses. Only one descriptor, BELe6, is different. This
escriptor belongs to the class of the BCUT-descriptors and
s related to the two-dimensional structure of the molecule
19].

Fig. 4 shows the residual plot for the PLS model. The
oefficient of determination equals 0.879 and the RMSECV
alue is 0.185 or 11%. These values show that the PLS model
ts the calibration data well and also has good predictive abil-

ties. The residual plot of the PLS-model shows considerable
maller residuals compared to those for the MLR- and the PCR
odels. The trend in the higher part of the absorption range

s observed in the log(%HIA) interval about 1.75–2.25. This
s a range of 0.5 units and is almost half the range over which
he trend is observed in the MLR-models. This is an indication
or an improvement compared to the previous discussed
odels.
The dataset used contains a majority of the molecules in the

igher parts of the absorption range. Several molecules have
%HIA equal to 100% and for an ideal model their residu-

ls should be situated on a vertical line at log(%HIA) equal
o 2. Therefore the smaller the interval over which a trend is
bserved in the above models, the better their predictive proper-
ies It could thus be concluded that, even if the residual plot still
oes not show a random distribution of the residuals, PLS gives
better model, with higher descriptive and predictive abilities

ompared to the MLR and PCR-models. This can be explained

y the fact that PLS takes into account the co-variance of the
escriptive variables with the response variable. This means that
LS is somehow capable of dealing with non-linearities in the
ata.
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Table 5
The different base functions (Bm) of the MARS model and their coefficients
(am) [11]

Bm Definition am

B1 1 1.99
B2 (188-T(O··O))+ 0.00210
B3 (T(O··O)-188)+ 0.00240
B4 (2.15-H4p)+ −0.382
B5 (−1.29-BLTF96)+ 0.0722
B6 (BLTF96 + 1.29)+ −0.145
B7 (−0.698-Mor14v)+ −2.63
B8 (Mor14v + 0.698)+ −0.230
B9 (8,00-nHDon)+ −0.0470
B10 (nHDon-8,00)+ −0.497
B11 (35.6-RDF075m)+ 0.0292
B12 (RDF075m-35.6)+ 0.0653
B13 (−0.345-Mor18m)+ 1.24
B14 (GATS4m-0.960)+ 0.899
B15 (0.0650-HATS4p)+ −118,4
B16 (MAXDN-5.63)+ −33.0
B17 (R1e-2.20)+ −3.15
B18 (0.153-Mor17m)+ −0.406
B19 (Mor19v+0.221)+ 0.351
B20 (0.169-Mor22m)+ 0.339
B21 (Mor22m-0.169)+ −1.05
B22 (R3u-1.65)+ −0.446
B23 (ALOGP2-0.288)+ −0.0123
B24 (0.729-GATS1e)+ −0.636
B25 (GATS1e-0.729)+ −0.782
B26 (1.42-AAC)+ 1.65
B27 (0.266-E1m)+ 3.77
B
B
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28 (1,00-nCt)+ −0.175

29 (0.0930-Mor18m)+ −0.977

.4. Multivariate adaptive regression splines (MARS)

The MARS model used for comparison with previous models
s the same as obtained in previous work [11]. Table 5 shows the

ifferent base functions of the MARS-model and Fig. 5 shows
he residual plot for this model.

The obtained R2 value is 0.933 [11] and the RMSECV, eval-
ated with 10-fold cross validation is 0.203 or 12.0%. It can

Fig. 5. Residual plot for the MARS-model.
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Fig. 6. Residual plot for the TMARS model.

e concluded that the MARS model gives similar results as the
LS-model, the R2 and RMSECV values are very similar. When

he residual plot of the MARS model is compared to the ones of
he previous models, a high improvement can be seen towards
he MLR- and PCR models. Compared to the residual plot of the
LS model, the residuals are slightly larger and the range over
hich the trend is observed is slightly broader. It can be con-

luded that the MARS model fits the data better, shows less
nder fitting, than the MLR and the PCR models described
bove. The MARS model has similar properties as the PLS
odel.

.5. Two-step MARS procedures

.5.1. Stepwise MLR-MARS (TMARS)
The TMARS model for this data set was already built and

valuated in previous work [11]. The obtained model is given
y following equation:

ˆ = 1.88 − 0.0886(nO) − 0.0499(T(S· · ·S))

− 0.126(Mor08m) + 0.435(Mor16v) + 0.121(HATS8v)

− 0.399(C-030) − 0.0010(337.6-TIE)+
− 0.0133((TIE-337.6)(2.14-R1e))+ (6)

ig. 6 shows the residual plot for the TMARS model. The
btained R2 value is 0.720 [11] and the RMSECV, evaluated
ith 10-fold cross validation is 0.296 or 17.5%. Compared to

he stepwise MLR model and the MARS model, the TMARS
odel performs slightly better than the MLR model, but worse

han the MARS model. The residuals are smaller than in the step-
ise MLR model. It can be concluded that the TMARS model
ts the data better and shows less under fitting. The residual plots
f both the MARS and the TMARS model are similar.
.5.2. Genetic algorithm-MLR-MARS (GTMARS)
The MLR model obtained in Section 4.1.2 is used as start-

ng point for the two-step MARS procedure. In a first step the
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Table 6
Selected descriptors in the GTMARS model [19]

Descriptor Definition Descriptor class

nO Number of oxygen atoms Constitutional descriptors
GATS2p Geary autocorrelation-lag

2/weighted by atomic
polarizabilities

2D autocorrelation

EEig11x Eigenvalue 11 from edge adjacent
matrix weighted by edge degrees

Edge adjacency indices

RDF065m Radial distribution
function-6.5/weighted by atomic
masses

RDF descriptors

H3m H autocorrelation of lag
3/weighted by atomic masses

GETAWAY descriptors

C-003 CHR3 Atom-centered fragments
HATS4p Leverage-weighted GETAWAY descriptors
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van der Waals volumes [19]. HATSv belongs to the class of
the GETAWAY-descriptors and can be related to the three-
dimensional structure of the molecules.
autocorrelation of lag 4/weighted
by atomic polarizabilities

escriptors in the MLR model, which can be replaced by a pair
f spline functions are selected. In the next step the stepwise
ddition procedure of pairs of spline functions is applied, result-
ng in the global GTMARS model. The global model is pruned
sing a sequence of general cross validations alternated with
0-fold cross validations. The optimal model is selected using
onte Carlo cross validation (MCCV) [11,13].
The selected model consists of nine terms, from which one

s a constant, five are linear functions, one is a spline function
f first order and two form a pair of spline functions of second
rder. The model is given by following equation:

ˆ = 2.24 − 0.84(GATS2p) + 0.62(EEig11x)

+ 0.73(RDF065m) − 1.88(H3m) + 0.27(C-003)

− 5.30(0.22-nO) + 73.01((0.22-nO) · (HATS4p-0.06))+
+ 352.37((0.22-nO) · (0.06-HATS4p))+ (7)

able 6 shows the selected descriptors, their definition and class.
nly one descriptor, HATS4p, is added by the TMARS algo-

ithm. This descriptor belongs to the GETAWAY descriptors
nd can be related to the geometrical structure of the molecules
19]. All other descriptors were already selected in the original
A-MLR model.
Fig. 7 shows the residual plot of the GTMARS model. The

2-value for this model is 0.549 and the RMSECV, evaluated
ith 10-fold cross-validation is 0.347 or 20.6%. Similar con-

lusions, as in previous section, can be made. The GTMARS
odel performs slightly better than the GA-MLR model, but
orse than the MARS model. When residual plots are compared

n improvement can be seen compared to the GA-MLR model.
he residual plot of the GTMARS-model shows a similar trend,
ut has larger residuals compared to that of the MARS model.

.5.3. Principal Component Regression-MARS

PCR-MARS)

The PCR-model obtained in Section 4.2 is used as starting
oint for the TMARS algorithm. Therefore the scores on the first
ight principal components were added to the data matrix with
Fig. 7. Residual plot for the GTMARS model.

escriptive variables. In a first step it was evaluated if some of the
rincipal components in the PCR-model could be replaced by a
air of spline functions. In a next step pairs of splines were added
tepwise, resulting in the global PCR-MARS model, followed by
runing and selection of the optimal model size using MCCV.
he obtained model consists of five terms, one constant, two

inear terms based on the scores on PC3 and PC5, respectively,
nd two form a pair of spline functions of second order:

ˆ = 2.23 − 0.26(PC3) − 0.35(PC5)

− 38.05((0.17-nO) · (HATSv-0.48))+
− 29.24((0.17-nO) · (0.48-HATSv))+ (8)

ith nO, the number of oxygen atoms in the molecule and
ATSv, the leverage-weighted total index/weighted by atomic
Fig. 8. Residual plot for the PCR-MARS-model.
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Fig. 9. Residual plot for the PLS-MARS model.

Fig. 8 shows the residual plot of the PCR-MARS model.
he obtained R2-value is 0.667 and the RMSECV is 0.307 or
8.2%. From these results the same conclusions can be made
s in previous sections. The PCR-MARS model performs better
han the PCR model, but worse than the MARS-model. When
he residual plots are compared it can be seen that there is a
igh improvement compared to the PCR model. Comparing the
esidual plot to that of the MARS model shows that both resid-
al plots show a similar trend, but residuals are smaller for the
ARS model.

.5.4. Partial Least Squares-MARS (PLS-MARS)
In analogy with PCR-MARS, the PLS model obtained in

ection 4.3 was used as starting point for the application of the
MARS algorithm. The scores of the seven PLS factors selected

or the PLS-model were added to the data set as descriptors.
gain it was evaluated if some of the scores on the PLS-factors

ould be replaced by a pair of spline functions. In the follow-
ng steps, pairs of splines were added stepwise resulting in the
lobal PLS-MARS model, the global model was pruned and the
ptimal model size was selected using MCCV. The obtained
odel consists of nine terms, one constant, six linear terms

ased on the scores on respectively PLS-factors 1–6 (PLS1,
LS2, PLS3, PLS4, PLS5, PLS6), one spline function of first
rder based on the scores on PLS-factor 7 (PLS7) and a spline
unction of second order based on the scores on PLS7 and the
alues of the 3D-MoRSE descriptor, Mor15m (3D-MoRSE sig-
al 15/weighted by atomic masses), a descriptor that can be
elated to the geometrical structure of the molecules [19]:

ˆ = − 2.52 + 0.60(PLS1) + 1.75(PLS2) + 1.27(PLS3)

+ 1.23(PLS4) + 0.81(PLS5) + 0.90(PLS6)

− 1.22(PLS7 − 0.39)+

− 88.51((PLS7 − 0.39) · (0.82-Mor15m))+ (9)

ig. 9 shows the residual plot of the PLS-MARS model. The R2-
alue is 0.903 and the RMSECV is 0.167 or 9.9%. From these

p
b
o
p

nd Biomedical Analysis 43 (2007) 119–130

esults it can be seen that the predicted and observed log(%HIA)
re highly correlated and that the prediction error evaluated with
0-fold cross validation is the lowest of all models presented.
t can be concluded that the PLS-MARS model performs better
han the individual PLS and the MARS models. The residual
lots for respectivily the PLS-, the MARS- and the PLS-MARS
odels are very similar. A slight improvement compared to the

esidual plot of the MARS model can be observed. This model
hows the smallest residuals of all models described in this paper.
till the trend in the higher part of the absorption range can still
e observed.

.6. Arcsine transformation

Since it is known that the classical transformation of percent-
ge data is the arcsine transformation [13], this transformation
as applied to the percentages HIA of the data set. The arcsine

ransformation is given as follows:

rcsin(%HIA) = sin−1(%HIA/100) (10)

ll models described above were rebuilt using the arcsine trans-
ormed %HIA as response variable. In general, similar results
ere obtained as with the log transformed data. The RMSECV
alues were generally higher and the correlations lower than
or the respective models build with the log transformed data.
he best model obtained with the arcsine transformed data was
gain the PLS-MARS model. The selected model consists of
ine terms, one constant, seven linear terms based on the scores
n respectively PLS1, PLS2, PLS3, PLS4, PLS5, PLS6 and
LS7 and a spline function of second order based on the scores
n PLS7 and the values of the 3D-MoRSE descriptor, Mor06v
3D-MoRSE signal 06/weighted by atomic van der Waals vol-
mes), a descriptor related to the three-dimensional structure of
he molecules [19]:

ˆ = −3.06 + 0.59(PLS1) + 1.58(PLS2) + 1.17(PLS3)

+ 1.32(PLS4) + 0.67(PLS5) + 0.87(PLS6) − 0.62(PLS7)

− 3.77((PLS7 − 0.30) · (Mor06v-0.45))+ (11)

ig. 10 shows the residual plot for the PLS-MARS model for
he arcsine transformed data. The obtained R2-value is 0.633 and
he RMSECV, evaluated with 10-fold cross validation is 0.312
r 20.9%. At first sight the residual plot seems to show a more
andom distribution of the residuals than the residual plot for the
LS-MARS model build with the log transformed data. A closer
nalysis shows that at the highest end of the absorption range a
imilar trend is seen as in the plot for the log transformed data.
he higher concentration of objects in this region for the log

ransformed data is due to the fact that the log transformation
aintains more the composition of the original data set. The data

ontains a high number of objects with high absorption values
nd a low number of objects with low absorption values. Fifty

ercent of the objects in the data set has an absorption value
etween 80 and 100% which explains the high concentration of
bjects in the high part of the absorption range in the residual
lots for models build with the log transformed data. In the resid-
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Table 7
Overview of the different models

Regression method RMSECV R2 Number of terms

Stepwise MLR 0.331 0.616 13
GA-MLR 0.346 0.576 11
PCR 0.449 0.293 9
PLS 0.185 0.879 8
MARS 0.203 0.933 29
TMARS 0.296 0.720 9
GTMARS 0.347 0.549 9
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ig. 10. Residual plot for the PLS-MARS model obtained with the arcsine trans-
ormed data.

al plot of the model obtained with the arcsin transformed data,
trend can also be observed at the lowest end of the absorption

ange. Since an analogue trend is found in the residual plots of
he models build with log and arcsine transformed data, since

odels build with log transformed data show higher linear cor-
elations between predicted and observed values and given the
etter predictive properties of the latter models, it was decided
o limit the discussion in this paper to the models obtained with
og transformed data.

. Conclusions

In general, it can be concluded that, for this data set, the
ombinations of linear modelling techniques with the non-linear
echnique MARS result in an improvement of the linear models.
hese improvements are clear for the descriptive properties of

he models. In general the residual plots obtained with the com-
ination techniques show smaller residuals compared to those
rom the linear techniques. Also the trend observed in the higher
art of the absorption range is reduced to a more narrow inter-
al. This points at a better distribution of the residuals, since for
his dataset the ideal residual plot should contain a high number
f points at the end of the absorption range, situated on a verti-
al line at log(%HIA) equal to 2. The smaller the interval over
hich the trend is seen at the end of the absorption range, the

loser to the ideal situation and the better the model. In general,
he combination techniques resulted in a better data fit with less
nder fitting. However, the RMSECV values of the combined
odels are only slightly better than those of the linear mod-

ls, but because of the better data fit, predictions based on the
ombined models should be more robust and more reliable than
hose based on the linear models. The fact that the RMSECV
alues of the linear and combined models are similar, combined

ith the selection of the optimal models using eleven sequences
f MCCV [11,23], which should protect the model from over-
tting, indicates that the combination methods does not result

n over fitted models. Still to be sure that the models are not
CR-MARS 0.307 0.667 5
LS-MARS 0.167 0.903 9

verfitting, they should be tested with an external test set. The
election of a representative external test set was not possible
ere, due to the nature and the distribution of the data.

Table 7 gives a summary of the model fit and the predic-
ive properties for all presented models. In general, the models
btained with the combined methods perform very similar to
he MARS-model. Only the PLS-MARS model performs better.
he PLS-MARS model with a a cross-validation error of 9.9%
nd quite small residuals is the best model obtained for this data
et.

To summarize it can be said that the observed improvement
o a stepwise MLR model by including it in the two-step MARS
rocedure [11,12], can be generalized to other linear modelling
echniques. In fact it was shown that the use of another variable
election technique for MLR, or the use of PCR and PLS as
tarting point for the two-step MARS procedure resulted in better
odels.
As already shown in previous work [11], it was confirmed that

wo-step MARS procedures with different linear techniques can
e very valuable in QSAR.
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